122,230 research outputs found

    Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering

    Full text link
    We present a detailed temperature dependent Raman light scattering study of optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K), Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting BaFe{2}As{2} single crystals. In all samples we observe a strong continuous narrowing of the Raman-active Fe and As vibrations upon cooling below the spin-density-wave transition Ts. We attribute this effect to the opening of the spin-density-wave gap. The electron-phonon linewidths inferred from these data greatly exceed the predictions of ab-initio density functional calculations without spin polarization, which may imply that local magnetic moments survive well above Ts. A first-order structural transition accompanying the spin-density-wave transition induces discontinuous jumps in the phonon frequencies. These anomalies are increasingly suppressed for higher potassium concentrations. We also observe subtle phonon anomalies at the superconducting transition temperature Tc, with a behavior qualitatively similar to that in the cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio

    Detection of a single-charge defect in a metal-oxide-semiconductor structure using vertically coupled Al and Si single-electron transistors

    Full text link
    An Al-AlO_x-Al single-electron transistor (SET) acting as the gate of a narrow (~ 100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET) can induce a vertically aligned Si SET at the Si/SiO_2 interface near the MOSFET channel conductance threshold. By using such a vertically coupled Al and Si SET system, we have detected a single-charge defect which is tunnel-coupled to the Si SET. By solving a simple electrostatic model, the fractions of each coupling capacitance associated with the defect are extracted. The results reveal that the defect is not a large puddle or metal island, but its size is rather small, corresponding to a sphere with a radius less than 1 nm. The small size of the defect suggests it is most likely a single-charge trap at the Si/SiO_2 interface. Based on the ratios of the coupling capacitances, the interface trap is estimated to be about 20 nm away from the Si SET.Comment: 5 pages and 5 figure

    Proximity and anomalous field-effect characteristics in double-wall carbon nanotubes

    Full text link
    Proximity effect on field-effect characteristic (FEC) in double-wall carbon nanotubes (DWCNTs) is investigated. In a semiconductor-metal (S-M) DWCNT, the penetration of electron wavefunctions in the metallic shell to the semiconducting shell turns the original semiconducting tube into a metal with a non-zero local density of states at the Fermi level. By using a two-band tight-binding model on a ladder of two legs, it is demonstrated that anomalous FEC observed in so-called S-M type DWCNTs can be fully understood by the proximity effect of metallic phases.Comment: 4 pages, 4 figure

    Entanglement between two fermionic atoms inside a cylindrical harmonic trap

    Get PDF
    We investigate quantum entanglement between two (spin-1/2) fermions inside a cylindrical harmonic trap, making use of the von Neumann entropy for the reduced single particle density matrix as the pure state entanglement measure. We explore the dependence of pair entanglement on the geometry and strength of the trap and on the strength of the pairing interaction over the complete range of the effective BCS to BEC crossover. Our result elucidates an interesting connection between our model system of two fermions and that of two interacting bosons.Comment: to appear in PR

    High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase

    Full text link
    In this paper the evolution of a quantum system drived by a non-Hermitian Hamiltonian depending on slowly-changing parameters is studied by building an universal high-order adiabatic approximation(HOAA) method with Berry's phase ,which is valid for either the Hermitian or the non-Hermitian cases. This method can be regarded as a non-trivial generalization of the HOAA method for closed quantum system presented by this author before. In a general situation, the probabilities of adiabatic decay and non-adiabatic transitions are explicitly obtained for the evolution of the non-Hermitian quantum system. It is also shown that the non-Hermitian analog of the Berry's phase factor for the non-Hermitian case just enjoys the holonomy structure of the dual linear bundle over the parameter manifold. The non-Hermitian evolution of the generalized forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page

    Fourier transform and rigidity of certain distributions

    Full text link
    Let EE be a finite dimensional vector space over a local field, and FF be its dual. For a closed subset XX of EE, and YY of FF, consider the space Dξ(E;X,Y)D^{-\xi}(E;X,Y) of tempered distributions on EE whose support are contained in XX and support of whose Fourier transform are contained in YY. We show that Dξ(E;X,Y)D^{-\xi}(E;X,Y) possesses a certain rigidity property, for XX, YY which are some finite unions of affine subspaces.Comment: 10 page
    corecore